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Euler Characteristic in Percolation Theory 
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The notion of the Euler characteristic is introduced in percolation theory, 
which, in fact, was implicitly used from the very beginning of studying percola- 
tion problems. An exact formula is given for the case of the ball problem, along 
with some of its generalizations. 

KEY WORDS:  

One of the key problems of percolation theory is to determine the number 
of clusters or, speaking in terms of algebraic topology, the zero Betti 
number, as a function of the percolation parameter. However, this problem 
seems to be very difficult, as no exact formulas have been obtained up to 
now. So it would be of interest to calculate other possible topological 
invariants. One such invariant is the Euler characteristic. Its calculation for 
two-dimensional lattice problems was performed in fact by Sykes and 
Essam. (1) For certain lattices they constructed a special "matching" polyno- 
mial, which is nothing else but the Euler characteristic of the colored part  
of the plane. For  some special lattices these polynomials gave them the 
possibility to calculate the exact values of percolation thresholds. Recently 
Bardeen e t  al. (2) and independently Hamil ton e t  al. (3) obtained an expres- 
sion for the genus of the boundary surface for the continuous percolation 
problem. It is easy to see that the genus they used is again the Euler 
characteristic of the colored phase taken with a negative sign. Here I 
present a calculation of the Euler characteristic for the ball problem of 
percolation theory. 

To define the ball problem, consider an independent uniform random 
distribution of points in the d-dimensional Euclidean space with the mean 
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density p. Surround every point by a d-dimensional ball B a of radius r 
centered at this point. We are interested in the topological properties of 
the union of all balls. 

The main topological characteristics of a compact figure are the 
so-called Betti numbers fli, 0 ~ < i < d  (the ranks of the corresponding 
homology groups), which have the intuitive meaning of the number of 
cavities with /-dimensional boundary in the figure. In particular, fl0 is the 
number of separate connected components (clusters) of the figure, and fll 
is the number of mutually noncontractible loops which can be drawn on 
the figure. 

In our case the figure is unbounded, so we choose specific Betti 
numbers per point. More precisely, let us consider the large but bounded 
volume V. This volume cuts out a compact part of our figure. The specific 
Betti numbers are the limits of the ratios of the Betti numbers of this part 
to the number of the points getting in V when V tends to the whole space. 
It is easy to see that such "specific topology" depends not on r and p 
separately, but only on their dimensionless combination: 

o~ = Vd(r )p  

where Vd(r) is the volume of the d-dimensional ball of radius r. According 
to this definition e is the mean number of points in one ball of radius r. 

Let us define the specific Euler characteristic as the alternating sum of 
specific Betti numbers 

Xd(O~)=l~O(~)--/~l(O~)-J V . - . - 4 - ( - - 1 )  d l f ld I((Z) 

The main result of this paper is the following. 

T h e o r e m .  Zd(CO are given by the following recurrence formulas: 

ZI((~) = e 

d 
z~,(~) = ~ [~z~, 1(~)] 

In particular, 

z 2 ( ~ )  = ( 1  - ~ )  e - ~  

Z3(0~) = (1 - - 3 ~ + c d ) e  -~ 

Proof .  First notice that balls forming the figure give a covering; by 
means of its nerve X we can calculate the homology of the figure. 2 Let us 

2 The nerve of the covering is a polyhedron whose n simplexes corresponds to (n + 1)-multiple 
intersections of elements of the covering. For sufficiently "good" covering the nerve and the 
figure are homotopically equivalent. See ref. 4 for details. 
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denote by Cn, d(~) the specific number  of the n-simplexes of the nerve ri.e., 
the specific number  of the (n + 1)-multiple intersections of the balls] .  In 
part icular ,  Co, d(~) is the specific number  of balls themselves, so C0,a(~) = 1. 
The specific var iant  of the classical Eu le r -Po incar6  theorem gives the 
equali ty 

n = O  

So, to determine Zd(~), it is sufficient to calculate Cn, a(c0. 

l e m m a :  
( n +  1) d-1 

Proof .  First consider the case n = 1. I t  is easy to see that  two vertices 
form an edge in the nerve Y if and only if one of them lies in the ball of 
radius 2r with center at the other  vertex. So when V - ,  ov we have 

Ct.a(~)  = (1 /2 ! )E2dVa(r )P]  V p / V p  = 2 a -  1~ 

Consider  now the case of a rb i t ra ry  n. Deno te  by T = (Ba) ~ + ~ _ ~d(, + ~) 
the direct p roduc t  of n + 1 d-dimensional  balls centered at 0. Let L be the 
d-dimensional  diagonal  x]at=X(zJ)= . . . .  --,n+l~(~) and let F be the strip 
obta ined by moving  T along L (see Fig. 1 for d =  1, n = 1). It  is easy to see 

y/  
Fig. 1. The strip F is formed by moving the product T of n + I d-dimensional balls B ~ along 
the d-dimensional diagonal L. This figure represents the case when d =  1, n = 1, so the balls 
are just segments and T =  (Ba) ~§ is a square. 
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that vertices x] d~, x~2 d) ..... ~(d) form an n-dimensional simplex in A/" if and ~ V n + I  

only if the point (x~ e), ,~(d) ,.(d) 1) corresponding to them in Na(,+I) lies ~ 2  , ' " ,  ~ n  + 

in F. Let Lv be the image of V on the diagonal L via the diagonal inclusion 
x ~-+ (x,..., x). Let us denote by F~ _c F the figure obtained by the moving T 
along L~. Then, as V ~  oo, we have 

1 Fvp,+ 1 
C"'d(~) = (n + 1)! Vp 

So the problem is reduced to the calculation of the ratio of the volume 
of the figure F~ covered by moving T along the diagonal and the magnitude 
of displacement V. I assert that this ratio is equal to (n + 1) d [Vd(r)]  n. I 
present the proof in the case of d =  1 below; in the general case the result 
is obtained by rather cumbersome induction on n and d. 

When d = 1, T is an (n + 1 )-dimensional hypercube and F~ is the union 
of the sets covered by its forward facets, i.e., the facets of the kind (xl ..... 
r,..., xn+ ,). Every facet covers the volume [Vl( r ) ]  n V, and the total number 
of such facets is n + 1. That  is exactly what we needed. 

Now we can return to the proof of the theorem. The equality 
Xl(e) = e -~ follows directly from the lemma when d = 1, and the equality 

d 

is just an implication of the analogous equality 

d 
c.,d(~) = ~  [~c.,d_ 1(~)] 

The theorem is proven. 
The proof of the lemma given above can be easily generalized to the 

case where the initial figure is not a ball but a direct product of several dif- 
ferent balls of total dimension d. In this case the sets F~ and V are direct 
products of the corresponding sets for each ball, and the ratio F~/V is a 
product of the corresponding ratios. So the theorem is true in this case, 
too. Apparently, the theorem remains true for the wide class of initial 
figures. 
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